Part Number Hot Search : 
6106P IRFP341 MC12202M 2R2M105 HI1177 IRF741 HI1177 PSMN0
Product Description
Full Text Search
 

To Download VN800STR-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VN800S-E VN800PT-E
HIGH SIDE DRIVER
Table 1. General Features
Type VN800S-E VN800PT-E RDS(on) 135 m IOUT 0.7 A VCC 36 V
Figure 1. Package
CMOS COMPATIBLE INPUT THERMAL SHUTDOWN s CURRENT LIMITATION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT s REVERSE BATTERY PROTECTION (*) s IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE
s s
SO-8
PPAK
DESCRIPTION The VN800S-E, VN800PT-E are monolithic devices made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes.
Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. This device is especially suitable for industrial applications in norms conformity with IEC1131 (Programmable Controllers International Standard).
Table 2. Order Codes
Package Tube Tape and Reel
SO-8 PPAK
Note: (*) See application schematic at page 10.
VN800S-E VN800PT-E
VN800STR-E VN800PTTR-E
Rev. 1 October 2004 1/24
VN800S-E / VN800PT-E
Figure 2. Block Diagram
VCC
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND Power CLAMP
DRIVER INPUT LOGIC CURRENT LIMITER OUTPUT
STATUS OVERTEMPERATURE DETECTION
Table 3. Absolute Maximum Ratings
Symbol VCC - VCC - IGND IOUT - IOUT IIN VIN VSTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Input Voltage Range DC Status Voltage Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - STATUS - OUTPUT Ptot EMAX EMAX Tj Tc Tstg Lmax - VCC Power Dissipation TC=25C Maximum Switching Energy (L=77.5mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=1.5A) Maximum Switching Energy (L=125mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=1.5A) Junction Operating Temperature Case Operating Temperature Storage Temperature Max Inductive Load (VCC=30V; ILOAD=0.5A; Tamb=100C; Rthcase>ambient25C/W) 4.2 121 195 Internally Limited - 40 to 150 - 55 to 150 2 Value SO-8 PPAK 41 - 0.3 - 200 Internally Limited -6 +/- 10 -3/+VCC + VCC 4000 4000 5000 5000 41.7 Unit V V mA A A mA V V V V V V W mJ mJ C C C H
2/24
VN800S-E / VN800PT-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC
VCC OUTPUT OUTPUT VCC
5
4
N.C. STATUS INPUT
8
1
GND
5 4 3 2 1
OUTPUT STATUS INPUT GND
SO-8
PPAK
Connection / Pin Status Floating X To Ground
N.C. X X
Output X
Input X Through 10K resistor
Figure 4. Current and Voltage Conventions
IS VF IIN INPUT ISTAT STATUS GND VIN VSTAT IGND VOUT OUTPUT IOUT VCC
VCC
Table 4. Thermal Data
Symbol Rthj-case Rthj-lead Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Value SO-8 PPAK 3 78 ( ) 45 (4)
3 1
Unit C/W C/W C/W C/W
Max Max Max Max
30 93 ( ) 82 (2)
(1) When mounted on FR4 printed circuit board with 0.5 cm 2 of copper area (at least 35 thick) connected to all VCC pins. (2) When mounted on FR4 printed circuit board with 2 cm 2 of copper area (at least 35 thick). (3) When mounted on FR4 printed circuit board with 0.5 cm 2 of copper area (at least 35 thick) connected to all VCC pins. (4) When mounted on FR4 printed circuit board with 6 cm 2 of copper area (at least 35 thick).
3/24
VN800S-E / VN800PT-E
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance IOUT =0.5A; Tj=25C IOUT=0.5A Off State; VCC=24V; Tcase=25C On State; VCC=24V On State; VCC=24V; Tcase=100C ILGND IL(off1) IL(off2) IL(off3) Output Current at turn-off Off State Output Current Off State Output Current Off State Output Current VCC=VSTAT=VIN=VGND=24V;VOUT=0V VIN=VOUT=0V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C 0 10 1.5 Test Conditions Min. 5.5 3 36 4 42 135 270 20 3.5 2.6 1 50 5 3 Typ. Max. 36 5.5 Unit V V V m m A mA mA mA A A A
IS
Supply Current
Table 6. Switching (VCC =24V)
Symbol td(on) td(off) dVOUT/ dt(on) dVOUT/ dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=48 from VIN rising edge to VOUT=2.4V RL=48 from VIN falling edge to VOUT=21.6V RL=48 from VOUT=2.4V to VOUT=19.2V RL=48 from VOUT=21.6V to VOUT=2.4V Min. Typ. 10 40 See relative diagram See relative diagram Max. Unit s s
Turn-on Voltage Slope
V/s
Turn-off Voltage Slope
V/s
Table 7. Input Pin
Symbol VINL IINL VINH IINH VI(hyst) IIN Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Current VIN=VCC=36V VIN=3.25V 0.5 200 VIN=1.25V 1 3.25 10 Test Conditions Min. Typ. Max. 1.25 Unit V A V A V A
4/24
VN800S-E / VN800PT-E
ELECTRICAL CHARACTERISTICS (continued) Table 8. VCC - Output Diode
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=0.6A; Tj=150C Min. Typ. Max. 0.6 Unit V
Table 9. Status Pin
Symbol VSTAT ILSTAT CSTAT Parameter Test Conditions Status Low Output Voltage ISTAT=1.6 mA Status Leakage Current Normal Operation; VSTAT=VCC=36 V Status Pin Input Normal Operation; VSTAT= 5V Capacitance Min Typ Max 0.5 10 30 Unit V A pF
Table 10. Protections (see note 1)
Symbol TTSD TR Thyst TSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status Delay in Overload Condition DC Short Circuit Current Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 0.7 VCC-47 VCC-52 2 VCC-57 Max 200 Unit C C C s A V
Tj>Tjsh VCC=24V; RLOAD=10m IOUT=0.5 A; L=6mH
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.
Figure 5.
OVERTEMP STATUS TIMING VIN Tj>Tjsh
VSTAT tSDL tSDL
5/24
VN800S-E / VN800PT-E
Table 11. Truth Table
CONDITIONS Normal Operation INPUT L H L H H L H L H L H OUTPUT L H L X X L L L L L L STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H
Current Limitation
Overtemperature Undervoltage Overvoltage
Figure 6. Switching time Waveforms
VOUT
80% dVOUT/dt(on) tr 10%
90% dVOUT/dt(off) tf t
VIN
td(on)
td(off)
t
6/24
VN800S-E / VN800PT-E
Table 12. Electrical Transient Requirements On VCC Pin
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C E C C C C C E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
Figure 7. Peak Short Circuit Current Test Circuit
+VCC
10k
VCC
STATUS CONTROL UNIT GND INPUT RIN
OUTPUT
RL=10m
GND
7/24
VN800S-E / VN800PT-E
Figure 8. Avalanche Energy Test Circuit
+VCC
10k
VCC
STATUS CONTROL UNIT INPUT RIN GND
OUTPUT
LOAD
GND
8/24
VN800S-E / VN800PT-E
Figure 9. Waveforms
NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst
OVERVOLTAGE VCCVOV
Tj INPUT LOAD CURRENT STATUS
TTSD TR
OVERTEMPERATURE
9/24
VN800S-E / VN800PT-E
Figure 10. Application Schematic
VCC
5V Volt. Reg
Control & Diagnostic I/O
VCC 24VDC
Rprot
STATUSn
Rprot INPUTn BUS ASIC
OUTPUTn LOAD R
GND
L DGND
VGND
RGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
10/24
VN800S-E / VN800PT-E
Figure 11. Off State Output Current
IL(off1) (A)
2.5 2.25 2 1.75 1.5 1.25 1 0.75 2 0.5 0.25 0 -50 -25 0 25 50 75 100 125 150 175 1 0 -50 -25 0 25 50 75 100 125 150 175
Figure 12. High Level Input Current
Iih (A)
8 7
Off state Vcc=36V Vin=Vout=0V
Vin=3.25V
6 5 4 3
Tc (C)
Tc (C)
Figure 13. Status Leakage Current
Ilstat (A)
0.1 0.09
Figure 15. On State Resistance Vs VCC
Ron (mOhm)
400 350
Vstat=Vcc=36V
0.08 0.07 0.06 0.05 0.04 0.03
Iout=0.5A
300 250
Tc= 150C
200 150
Tc= 25C
100
0.02 0.01 0 -50 -25 0 25 50 75 100 125 150 175 50 0 5 10 15 20 25
Tc= - 40C
30
35
40
Tc (C)
Vcc (V)
Figure 14. On State Resistance Vs Tcase
Ron (mOhm)
400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 175
Figure 16. Input High Level
Vih (V)
3.6 3.4
Iout=0.5A Vcc=8V; 13V; 36V
3.2 3 2.8 2.6 2.4 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/24
VN800S-E / VN800PT-E
Figure 17. Input Low Level
Vil (V)
2.6 2.4 2.2 1.2 2 1.8 1.6 1.4 0.7 1.2 1 -50 -25 0 25 50 75 100 125 150 175 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 1.1 1 0.9 0.8
Figure 20. Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3
Tc (C)
Tc (C)
Figure 18. Turn-on Voltage Slope
dVout/dt(on) (V/ms)
1600 1400 1200 1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 150 175
Figure 21. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175
Vcc=24V Rl=48Ohm
Vcc=24V Rl=48Ohm
Tc (C)
Tc (C)
Figure 19. Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
Figure 22. ILIM Vs Tcase
Ilim (A)
2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 -50 -25 0 25 50 75 100 125 150 175
Vcc=24V Rl=10mOhm
Tc (C)
Tc (C)
12/24
VN800S-E / VN800PT-E
Figure 23. SO-8 Maximum turn off current versus load inductance
ILMAX (A) 10
1
A B C
0.1 1 10 L(mH )
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
100
1000
t
13/24
VN800S-E / VN800PT-E
Figure 24. PPAK Maximum turn off current versus load inductance
ILMAX (A) 10
A B
1
C
0.1 1 10 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
100
1000
t
14/24
VN800S-E / VN800PT-E
SO-8 Thermal Data Figure 25. SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.14cm2, 2cm2).
Figure 26. SO-8 Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
SO8 at 2 pins connected to TAB
110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5
PCB Cu heatsink area (cm^2)
15/24
VN800S-E / VN800PT-E
PPAK Thermal Data Figure 27. PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.44cm2, 8cm2).
Figure 28. PPAK Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
16/24
VN800S-E / VN800PT-E
Figure 29. SO-8 Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
0.5 cm2 2 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Figure 30. Thermal fitting model of a single channel HSD in SO-8
Pulse calculation formula
Z TH = R T H + Z THtp ( 1 - )
where
= tp T
Table 13. Thermal Parameter
Tj
C1 C2 C3 C4 C5 C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C)
0.14 0.24 1.2 4.5 21 16 58 0.00015 0.0005 7.50E-03 0.045 0.35 1.05
2
28
2
17/24
VN800S-E / VN800PT-E
Figure 31. PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.44 cm2 6 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Figure 32. Thermal fitting model of a single channel HSD in PPAK
Pulse calculation formula
Z TH = R T H + Z THtp ( 1 - )
where
= tp T
Table 14. Thermal Parameter
Tj
Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) 0.44 0.04 0.25 0.3 2 15 61 0.0008 0.007 0.02 0.3 0.45 0.8 6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
24
5
18/24
VN800S-E / VN800PT-E
PACKAGE MECHANICAL Table 15. SO-8 Mechanical Data
Symbol
A a1 a2 a3 b b1 C c1 D E e e3 F L M S L1 0.8 8 (max.) 1.2 3.8 0.4 4.8 5.8 1.27 3.81 4 1.27 0.6 0.65 0.35 0.19 0.25 45 (typ.) 5 6.2 0.1
millimeters Min Typ Max
1.75 0.25 1.65 0.85 0.48 0.25 0.5
Figure 33. SO-8 Package Dimensions
19/24
VN800S-E / VN800PT-E
PACKAGE MECHANICAL Table 16. PPAK Mechanical Data
Symbol
A A1 A2 B B2 C C2 D1 D E E1 e G G1 H L2 L4 R V2 Package Weight 0 Gr. 0.3 0.60 0.2 8 4.90 2.38 9.35 0.8 6.00 6.40 4.7 1.27 5.25 2.70 10.10 1.00 1.00
millimeters Min
2.20 0.90 0.03 0.40 5.20 0.45 0.48 5.1 6.20 6.60
Typ
Max
2.40 1.10 0.23 0.60 5.40 0.60 0.60
Figure 34. PPAK Package Dimensions
P032T1
20/24
VN800S-E / VN800PT-E
Figure 35. SO-8 Tube Shipment (no suffix)
B
C
A
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
100 2000 532 3.2 6 0.6
Figure 36. SO-8 Tape And Reel Shipment (suffix "TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 12.4 60 18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
12 4 8 1.5 1.5 5.5 4.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
21/24
VN800S-E / VN800PT-E
Figure 37. PPAK Suggested Pad Layout and Tube Shipment (no suffix)
A C
B
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
75 3000 532 6 21.3 0.6
3
1.8
6.7
Figure 38. PPAK Tape and Reel Shipment (suffix "TR")
REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 16.4 60 22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
16 4 8 1.5 1.5 7.5 2.75 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
22/24
VN800S-E / VN800PT-E
REVISION HISTORY Table 17. Revision History
Date
Oct. -2004
Revision
1 - First Issue
Description of Changes
23/24
VN800S-E / VN800PT-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
24/24


▲Up To Search▲   

 
Price & Availability of VN800STR-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X